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SYNTHESIS OF MCJ CODES

INTRODUCTION

It has become increasingly important to employ an effective mechanism for error con-
trol in the initial design or redesign of communication systems, both for channel protection
and for end-to-end use. The most efficient codes for these applications are the maximum
distance separable (MDS) codes, and the intent here is to present constructive techniques
for the implementation of Massey-Costello-Justesen (MCJ) codes, an important class of MDS
codes.

SYNTHESIS

The purpose of this study was to improve our understanding of constructive techniques
for the engineering implementation of systematic block codes in the Hamming metric, in
particular the MCJ codes [1] .The MCJ codes of immediate interest are of code length a
prime number p. Most prime number alphabet sizes commensurate with record communica-
tion requirements and with reliable computer to computer communication requirements
appear to be satisfied by primes p < 104.

The procedures discussed here are quite general, but the description is given in terms
of a specific example using the prime number p = 37 in the finite field GF (37). This is the
smallest prime number that can contain a full numeralphabet including the 26 letters, 10
numerals, and a spacing symbol. These MCJ prime number length codes have superior
error-correcting properties because they are MDS codes, can be decoded in a straightfor-
ward manner using well-defined algebraic techniques including the theory of algebraic and
geometric invariants not in general available to Bose-Chandhuri-Hocqueuhem (BCH) code
structures, and can be chosen to closely match communication circuit and user requirements
over real channels.

As BCH codes are defined by generating polynomials with distinct roots, and as the
most useful forms of MCJ codes are generated by a repeated root, the usual BCH synthesis
techniques prove to be inadequate for these codes. However, many decoding techniques
usually associated with BCH codes can be used to decode MCJ codes [2-4].

Note especially that the MCJ codes imply the removal of the usual restriction on
cyclic codes that the code length n and the characteristic p be relatively prime, usually
indicated by (n, q) = 1, where q = pm. This gives the MCJ codes a slight coding advantage
over the other optimal or MDS codes, the Reed-Solomon (RS) codes.

To demonstrate the general principles involved, the code to be discussed has generating
polynomial g(x) = (x - C)n - k and will be described in the cyclic case where the constant
c = 1, the code length n = 37, and the number of information symbols k = 31.

Manuscript submitted January 11, 1980.
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The starting point here is with the Vandermonde matrix, which in the multiple root
case is a generalization of the Pascal triangle. This matrix V(c) for c = 1 gives the powers
(x - 1)i, 0 < i < 36. Figure 1 emphasizes its relationship to the system function So, as it
evolves.

Figure 2 shows the location of the basis vectors for the row space that defines all the
code vectors of the (37, 31) code. The code generator matrix G1 (x) is developed from
multiples (x - c)i g(x) instead of xig(x) as in the usual synthesis of cyclic codes. To be noted
specifically in Fig. 2 are powers (x - 1)i, 31 < i < 36, which when read as vertical vectors
from left to right also are the truncated powers of (x + 1)), 0 < j < 36, and which are in the
form of a matrix H1 (x) whose rows are generated by (x - 1)ih(x), and h(x) = (x - 1)n/g(x) =
(X - 1)31.

The matrix S1 in Fig. 3 contains the reduced echelon [UkP] as derived by elementary
row operations on G1 of Fig. 2. The transmit system matrix So = ST is shown in Fig. 4,
which defines the systematic MCJ code. The decoding receive system matrix S-o1 shown in
Fig. 5 satisfies S0 S- 1 = I, where I is the 37 X 37 identity matrix. The matrix generates syn-
dromes exactly as in Fig. 2 of reference [1], but physically in an entirely different manner,
even though both are implementations of (x + 1). It is interesting to note that the physical
realization of the preceding encoders and decoders, when implemented by linear (or non-
linear) sequence generators, is more naturally described by the canonical form given by Bose
and Chaudhuri in their original paper [3], than by Peterson and Weldon [4] . However, the
Massey virtual encoder [1] is best described by Figs. 4 and 5 of this report.

Several different equivalent definitions for MCJ codes are possible as approached by
different points of view, but no attempt is made here to exhaust these possibilities. Finally,
although the MCJ codes will effectively correct random errors, they also have inherent burst
error correction capabilities.

An important consideration in the synthesis of block codes is the inclusion of fail-safe
error correction procedures in the decoding algorithm so that catastrophic error correction
or error propagation is minimized. The following theorem is included as one way of accom-
plishing this; however, the most productive test is outlined in paragraph 4.0 of the decoding
algorithm.

Theorem: If the homogeneous matrix of coefficients is of rank r, the nonhomogeneous
matrix or system of coefficients is consistent provided that the rank of this augmented
matrix is also r.

Consistency tests in the decoding procedure are pursued under five hypotheses as
follows:

H4: Four or more errors

H3: Three errors

H2 : Two errors

H1 : One error

Ho: Zero errors.

2



1 1 1 1 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11 12 13
3 6 10 1521 28 36 818 29 4
1 4 10 20 35 19 10 917 35 27

1 5 15 35 33 15 25 34 14 12
1 621 19 15 30 18 15 29

1 728 10 25 18 36 14
1 836 9 34 15 14

1 9 8 17 14 29
1 10 18 35 12

1 11 29 27
1 12 4

1 13
1

1 1 1 1 1 1 1
14 15
17 31
31 11

2 33
4 6
6 10

28 34
6 34
4 10
2 6

31 33
17 11
14 31

1 15
1

16 17
9 25
5 14
7 1229

16 18
7 23

31 171
16 23
2 1879
5 12
9 14

16 25
1 17

1

18 19 20
5 23 5
2 7 30

26 28 35
21 10 1
27 11 21
4 31 5

24 28 22
2 26 17

24 26 15
4 28 17

27 31 22
21 11 5
26 10 21

2 28 1
5 7 35

18 23 30
1 19 5

1 20
1

11
21 22
25 9
35 23
28 26
36 27
22 21
26 11
27 16

2 29
32 34
32 27

2 34
27 29
26 16
22 11
36 21
28 27
35 26
25 23
21 9
1 22

1

1 1
23 24
31 17
32 26
12 7
16 28
11 27
32 6
27 22

8 35
26 34
24 13
24 11
26 13

8 34
27 35
32 22
11 6
16 27
12 28
32 7
31 26
23 17

1 24
1

1 1 1 1
25 26 27 28
4 29 18 8
6 10 2 20

33 2 12 14
35 31 33 8
18 16 10 6
33 14 30 3
28 24 1 31
20 11 35 36
32 15 26 24
10 5 20 9
24 34 2 22
24 11 810
10 34 8 16
32 5 2 10
20 15 20 22
28 11 26 9
33 24 35 24
18 14 1 36
35 16 30 31
33 31 10 3
6 2 33 6
4 10 12 8

25 29 2 14
1 26 18 20

1 27 8
1 28

1

1 1
29 30
36 28
28 27
34 25
22 19
14 36

9 23
34 6
30 27
23 16
33 19
31 27
32 26
26 21
26 15
32 21
31 26
33 27
23 19
30 16
34 27

9 6
14 23
22 36
34 19
28 25
36 27
29 28

1 30
1

1 1 1 1 1 1
31 32 33 34 35 36
21 15 10 6 3 1
18 2 17 27 33 36
15 33 35 15 5 1

7 22 18 16 31 36
18 25 10 28 7 1
22 3 28 1 29 36
29 14 17 8 9 1

3 25 2 19 27 36
6 2 27 29 11 1

35 4 6 33 25 36
9 7 11 17 13 1

16 25 32 6 23 36
10 26 14 9 15 1
36 9 35 12 21 36
36 35 7 5 17 1
10 9 7 14 19 36
16 26 35 5 19 1
9 25 14 12 17 36

35 7 32 9 21 1
6 4 11 6 15 36

33 2 6 17 23 1
29 25 27 33 13 36
22 14 2 29 25 1
18 3 17 19 11 36
7 25 28 8 27 1

15 22 10 1 9 36
18 33 18 28 29 1
21 2 35 16 7 36
31 15 17 15 31 1

1 32 10 27 5 36
1 33 6 33 1

1 34 3 36
1 35 1

1 36
1

Fig. 1 - Generalized Vandermonde matrix
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1 1 1 1 1 1 1
1 2 3 4 5 6 7

1 3 6 10 1521
1 4 10 20 35

1 51535
1 621

1 7
1

1 1
8 9

28 36
19 10
33 15
19 15
28 10

8 36
1 9

1

1 1 11
10 11 12 13

8 18 29 4
9 17 35 27

25 34 14 12
30 18 15 29
25 18 36 14

9 34 15 14
8 17 14 29

10 18 35 12
1 11 29 27

1 12 4
1 13

1

1 1
14 15
17 31
31 11
2 33
4 6
6 10

28 34
6 34
4 10
2 6

31 33
17 11
14 31

1 15
1

1
16
9
5
7
2

16
7

31
7

16
2
7
5
9

16
1

1 1 t 1 1 1
17 18
25 5
14 2
12 26
9 21

18 27
23 4
124
1 2

23 24
18 4
9 27

12 21
14 26
25 2
17 5
1 18

1

19 20
23 5
730

28 35
10 1
11 21
31 5
28 22
26 17
26 15
28 17
31 22
11 5
10 21
28 1

7 35
23 30
19 5

1 20
1

21 22
25 9
35 23
28 26
36 27
22 21
26 11
27 16

2 29
32 34
32 27

2 34
27 29
26 16
22 11
36 21
28 27
35 26
25 23
21 9

1 22
1

1 1 1
23 24 25
31 17 4
32 26 6
12 7 33
16 28 35
11 27 18
32 6 33
27 22 28

8 35 20
26 34 32
24 13 10
24 11 24
26 13 24

8 34 10
27 35 32
32 22 20
11 6 28
16 27 33
12 28 18
32 7 35
31 26 33
23 17 6
124 4

1 25
1

1 1 1 1 1
26 27 28
29 18 8
10 2 20

2 12 14
31 33 8
16 10 6
14 30 3
24 1 31
11 35 36
15 26 24
5 20 9

34 2 22
11 8 10
34 8 16

5 2 10
15 20 22
11 26 9
24 35 24
14 1 36
16 30 31
31 10 3
2 33 6
10 12 8
29 2 14
26 18 20

1 27 8
1 28

1

29 30
36 28
28 27
34 25
22 19
14 36
9 23

34 6
30 27
23 16
33 19
31 27
32 26
26 21
26 15
32 21
31 26
33 27
23 19
30 16
34 27

9 6
14 23
22 36
34 19
28 25
36 27
29 28

1 30
1

Fig. 2 - Basis vectors for (37, 31) code
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34
6

27
15
16
28

1

35 36

335 36l

31 36
7 1

29 36

1 1
31 32
21 15
18 2
15 33

7 22
18 25
22 3
29 14
33 25

6 2
35 4

9 7
16 25
10 26
36 9
36 35
10 9
16 26
9 25

35 7
6 4

33 2
29 25
22 14
18 3
7 25

15 22
18 33
21 2
31 15

1 32
1

1
33
10
17
35
18
10
28
17
2

27
6

11
32
14
35
7
7

35
14
32
11
6

27
2

17
28
10
18
35
17
10
33

1

1

I
j

0
I00

n

0
C.)

Cn

0

u

C,

JA

w

8 91
19 27 36
29 11 1
33 25 36
17 13 1
6 23 36
9 15 1

12 21 36
5 17 1

14 19 36
5 19 1

12 17 36
9 21 1
6 15 36

17 23 1
33 13 36
29 25 1
19 11 36

8 27 1
1 936

28 29 1
16 7 36
15 31 1
27 536

6 33 1
34 3 36

1 35 1
1 36

1
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1 1 31 15 17 15 31
1 6 2 10 633 16

1 21 28 21 34 25 18
1 19 18 17 11 23 22

1 15 3 21 13 14 7
1 30 20 913 19 19

1 18 33 31 19 24 22
1 15 2 36 27 22 8

29 26 30 11 18 33
4 5 12 24 34 31
6 5 21 3 335
2 31 35 18 33 28
9 22 18 3 516

21 31 4 522 27
10 35 33 26 736

1 4 13 13 4 1 z
36 7 26 33 35 10 M
27 22 5 431 21

1 16 5 318 22 9 x
28 33 18 35 31 2 I

SI 35 3 321 5 6 x
31 34 24 12 5 4 4
33 18 11 30 26 29 CX

8 22 27 36 215 C4
22 24 19 31 33 1E

1 19 19 13 920 30
1 7 14 13 21 315

1 22 23 11 17 18 19
1 18 25 34 21 28 21

1 16 33 610 2 6
1 31 15 17 15 31 1

1 32 10 27 5 36
1 33 6 33 1

1 34 3 36
1 35 1

1 36
1

Fig. 3 - Reduced echelon matrix
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1

1
1

1
1

1
1

1

1 6 21 19 15 30 18 15
31 228 18 320 33 2
15 10 21 17 21 9 31 36
17 634 11 13 13 19 27
15 33 25 23 14 19 24 22
31 16 18 22 719 22 8

1
1

1

29 4 6
26 5 5
30 12 21
11 24 3
18 34 3
33 31 35

1
1

2 9
31 22
35 18
18 3
33 5
28 16

1
1

21 10
31 35
4 33
5 26

22 7
27 36

1
1

1 36
4 7

13 26
13 33
4 35
1 10

1
I

1

27 16 28
22 5 33

5 3 18
4 18 35

31 22 31
21 9 2

1
1

1

35 31 33
3 34 18
3 24 11

21 12 30
5 526
6 4 29

1
1

8 22
22 24
27 19
36 31

2 33
15 18

1
1

19 7
19 14
13 13

9 21
20 3
30 15

I
1

1
1

22 18 16 31 1
23 25 33 15 32 1
11 34 6 17 10 33 1
17 21 10 15 27 6 34 1
18 28 2 31 5 33 3 35 1
19 21 6 136 136 1 36

Fig. 4 - Transmit system matrix
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The specific purpose here [2] is to distinguish between cases where < t errors occur,
and cases where > t errors occur and correction should not be attempted.

CORRECTION PROCEDURE

Preliminary definitions:

Let

d = n-k+1=2t+1

MO =0

m = 1

n = pm = p = code length

k = number of information digits

n - k = number of parity digits

t = maximum number of correctable errors

Transmitted signal

f(x) = fO + fl x + + fn- k lx - * - + fn l-x

Noise signal

e(x) = %+eix+...++eenk 1X + +en 1X.

Received signal

r(x) = f(x) + e(x);

n-k-n-Ir(x) = ro +rix+...+rn k -X + rn 1X-1

The syndrome

s(x) = s +s X +... + S Xn - l;

g(x) = (x - c)P-k.

Specific Example

The following procedure is adequate for the decoding of any MCJ code described here
and uses a specific example in the Galois field GF(p) with p = 37, and the following param-

8
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eters: c = 1, n = 37, k = 31, n - k = 7, and t = 3, which will correct up to three character
errors. The block diagram to be followed is given in Fig. 6.

The received signal sequence is entered into the box r(x), following which the
syndromes si are calculated in the syndrome former, more explicitly detailed in Fig. 7.
The modified syndromes Si in Fig. 6 are calculated [5] as shown in Fig. 8 as a matrix
multiplication derived as follows:*

i i s
Si = jE j j!cisj, 1<i<p- k

S0 =S0

Where also
t - j

Si = E YrXr
r =1

O<i<p- k

Then define, for j = 0, 1, 2, ..., t - 1, the Newton matrix Nt-j, and the Prony matrixPt j:

So

Si

Si S2

S2 S3

S2 S3 S4

St-j-1 St-j St-j+1

XM OYA ° 0

0

0

X1 Y1 0

0 XmO

A

.. St- j- 1

. . . st-i

St-j+ I

... S2(t-j- 1i

... 0

... 0

... 0

*-- OM 

.- t °-lYt-j- 1A (O)
L 1

*An error in Eq. (32) in Ref. 1 is corrected here.
9
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rex} 
0-0

Fig. 6 - Decoding procedure

Fig. 7 - Syndrome former

(s0 sls2s3 s4s5 )

0 0 0 0
1 1 1 1
0 2 6 14
0 0 6 36
0 0 0 24
0 0 0 0

0

301
2

18

9,)

!1
0
0
0
0
0

Fig. 8 - Matrix multiplication for deriving
modified syndromes

10
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For mo = 0, and noting that 00 = 1, the various matrices are related by

=VP VTNt j = vt-jpt-jvt-j'

where the distinct root Vandermonde matrix Vt - is defined as follows:

Fi 1x 1 .. 1
X2 X2 X2 X 2i

0 1 X2 ...- 1

Vt-i

Xt-j-l Xt-j-1 Xt-i-l ... Xt-i-l
o 1 2 . t-j- 

DECODING ALGORITHM

The procedures in the following decoding algorithm are summarized in Fig. 9.

Step 1:

1.0 Define:

-S3 Si

A 3 = -S4 S2

-S5 S3

So Si

A 1 = Si S2

S2 S3

So

A 2 = S1

S2

S2

S3

S4

-S3

S4

-S5

-S3

-S4

-S5

AO = |N 3 1 =

S2

S3

S4

so Si S2

Si S2 S3
S2 S3 S4

11
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Fig. 9 - Algebraic method for locating error positions in code

1.1 If AO = A1 = A 2 = A 3 = 0, go to step 2.

1.2 If Ao = Oand at least one Ai 0 °, i = 1, 2, 3; inconsistent, do not correct.

1.3 If Ao 9L 0, then find

A 3 A2 A1
-3 02 =-; - a=A ; and -a3 + 2X - 1 X2 +X3 .

Step 2:

2.0 Define:

-S2 SI
B2 2

-S3 S2

S0 -S2
B 1 =2

S1 -S3

12

So S1

Bo =
S1 S2

Forj = 0

-g3SO + o2 S1 - a1 S2 = -S3

-aS, + 'Sg - og S3 = -S4

-03S2 + 02 S3 - o1 S4 = -S5

_03 + 02x - U1 x2 + x3 = 0

Forj = 1

a2SO - "IS = -S2

S2S1 - US 52 = -S3

02 - aIx + X2 = o

Forj = 2

-a1 SO = -S1

-01 +x = 0
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2.1 If Bo = B1 = B2 = °, go to step 3.

2.2 If B0 = ° and at least one Bi / 0, i = 1, 2; inconsistent, do not correct.

2.3 If Bo * 0, then find

B2

2 B 0

B1
;- 1 = B ; and a2 - a1X + = 0.

B 0

Step 3:

3.0 Define:

C1 ='-Si I;Co=' So I.

3.1 If C0 = C1 = 0; no errors.

3.2 If C0 = 0 and C1 = 0; inconsistent, do not correct.

3.3 If C0 O0, then find

Cl
-U1 = C ; andL-o1 + X = 0.

o

Step 4:

4.0 Substitute b in the appropriate equation, 0 < b Up - 1, for x, as shown in Fig. 10 (the
well-known Chien search), and find the error locations x 0 , X1 , X2 , ..., Xt- _ - 1. Go to
step 5. If the number of error locations does not equal the degree t - j of the proper
equation, more than t - j errors may have occurred; inconsistent, do not correct.

4.1 Alternate Step 4: Solve appropriate equations by algebraic techniques, indicated in Fig.
11, to find error locations.

Step 5:

5.0 Define:

1

1V3 1= X0

2

1 1

X1 X2

x2 X2
1 2

13



(-U3 02 - G1 1) C

(02 - GI 1 0) C

(-a, 1 0 0) C

b i1 11 11 111 11 11 11 11 11 11 11 11 11 11 1- 1 1 1 1 1 1i 
= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ;N

0 1 4 9 16 25 36 12 27 7 26 10 33 21 11 3 34 30 28 28 30 34 3 11 21 33 10 26 7 2 7 12 36 25 16 9 4 1

1 8 27 27 14 31 10 31 26 1 36 26 14 6 8 26 29 23 14 8 11 29 31 23 11 1 36 11 6 27 6 23 10 10 29 3

Fig. 10 -Chien search shown in matrix form
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Forj= 0
a0x3 +3a 1x 2 + 3a2 x +a3 = 0

H = (aoa2 - a)x' + (aOa3 - a1a2 )x + (a1a3 - a2) r

(a a a2) *00 2 1

-(aOa3 -a1a2 (a 3 1a2)274(aoa2-a12)(a a a2)

2(aoa2 - a2)

Giving x1 X2

A [(aoa 2-a2)x- (aoa2-a2)x1] 3+D [x-x 2 ] =0

(aoa 2 -a12) A + D = a0

(-x 1 (aa2 - a2))3 A + (-x 2 )3 D = a3

ao b2

a3 C2

3i 2

C1 C2

AX3 DY3

b1 a0

|b b2|C1 32

For j= 1

x = 19(U1 (a12 - 4a2/)

1 12

Forj= 2

x =1

Fig. 11 - Algebraic technique for finding error locations

15
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The error values are:

SO 1 1

Si X1 X2

52 X12 X222 1 2

yo = I V3 I

Y1 =

Y2 = 1V3 1

5.1 Define:

1 I
I V 2 1 =

X 0 X1

The error values are:

Yo =

Y1 =

so 1

S1 X1

I 72 1

I V21

16
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5.2 Define:

1V71= 11I.

The error value is:

ISo I

Yo I EV, I

Step 6:

6.0 As a final step, the fully corrected text, together with the corrected parities, is once
more entered into the syndrome former for final verification. The new syndrome
will now be zero, indicating either the message has been successfully corrected, or
miscorrected to another codeword. All other errors at distances greater than d will have
been detected in previous inconsistency checks. The complete procedure is outlined in
Fig. 6.

SIMPLIFIED SYNTHESIS

In practical code synthesis, the steps shown in Figs. 1, 2, and 3 may be bypassed by
first defining S-o , which is always in the simple binomial coefficient form of Fig. 5, and
then finding its inverse system matrix So, as in Fig. 4, by any conventional means. Further,
the system matrix So may be independently found by noting that most of the parity entries
are sequential states of a simple nonlinear generator whose coefficients are given by the
expansion of (x - 1)6; and the initial segment given directly by the expansion of (x - 1)i,
i = 0, 1, ..., 6.

CONCLUSIONS

Several alternatives have been considered for software or hardware implementation of
MCJ codes for communication system error protection. It was emphasized that MCJ codes
provide improved flexibility over existing procedures in matching an error control code to
a given user alphabet size while maintaining optimal performance. Techniques will be pre-
sented in the near future, similar to those given here, for synthesis and decoding of Reed-
Solomon type codes also over the Galois ground field.
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